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1. Motivation

 Probabilistic Methods are gaining in importance

 Monte Carlo simulation (MCS):

 Sample of representative realizations (e. g. with Simple Random Sampling (SRS))

 Calculation of the sample with deterministic methods

 Statistical evaluation of the results (Mean, Variance, Quantile value, Correlation 
Coefficient)

 Sample is generated randomly  Result of a MCS is also random
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1. Motivation

 Value to describe the variance of the result: Confidence Interval (CI)

 Real CI: repetitions of MCS required

 Determinable by analytical formulas or bootstrapping

 Latin Hypercube Sampling is used to reduce variance of result

 Problem 1: Known methods cannot describe the variance reduction

 Problem 2: Factor of variance reduction is unknown



Meta-model-based Quality Assessment of Sample Estimates Slide 5Andriy Prots

Faculty of Mechanical Science and Engineering| Institute of Fluid Mechanics | Chair of Turbomachinery and Flight Propulsion

1. Motivation

 Goal:

 Predicting the size of CI more precisely, when using LHS

 Reduce required sample size to reach a target size of CI

 Idea:

 Approximate system behavior with meta model (MM)

 Simulate MCS with help of MM

 Evaluate virtual MCS

 Assumption:

 Good description of system behavior with MM

 Real MCS can be approximated with virtual MCS
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2. Theoretical foundations

2.1. Test case: Beam

 Beam system:

 Input values:

 Height ℎ (uniform in 95 𝑚𝑚; 105 𝑚𝑚 )

 Width 𝑏 (uniform in [45 𝑚𝑚, 55 𝑚𝑚])

 Young’s module 𝐸 (normal with 𝜇 = 210 000 𝐺𝑃𝑎 und 𝜎 = 10 000 𝐺𝑃𝑎)

 Force 𝐹 (normal with 𝜇 = 2 500 𝑁 und 𝜎 = 300 𝑁)

 Position of the Force  𝐿𝐹 (uniform in [0 𝑚𝑚, 6 500 𝑚𝑚])

 Output value:

 Deflection 𝑤𝑖 at the end (calculated by beam theory)
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2. Theoretical foundations

2.2. Monte Carlo Simulation

 MCS: description of system behavior based on a random sample

 Required steps:

 Generate samples

 Evaluate sample with deterministic models

 Evaluate the results statistically

 Possible result values:

 Mean

 Variance / Standard deviation

 Quantile values

 Correlation coefficient
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2. Theoretical foundations

2.3. Confidence Intervals

 Confidence Intervals (CI): describes the variance of a result value of MCS

 Significance level 𝛼: CI contains the real value in 1 − 𝛼 ∗ 100% of the cases

 Smaller CI  result can be more trusted

 Possibilities of determining the CI

 Repetition of MCS (not practical)

 Analytical formulas

 E. g. for mean: ത𝑦 ± 𝑧
1−

𝛼

2
𝜎/ 𝑛

 Bootstrapping

 Assumption: realization within sample are independent

 Reduction of variance from LHS is not considered!
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2. Theoretical foundations

2.4. Meta models

 Meta model (MM): description of system behavior with simple approach

 E. g. polynomial meta model:

 ෤𝑦 = 𝑐0 + 𝑐1 𝑥1 + 𝑐2 𝑥2 + 𝑐3 𝑥1
2 + 𝑐4 𝑥2

2

 Determination of coefficients: least square approach

 Quality Assessment:

 Coefficient of Determination 𝑅2 = 1 −
σ𝑖=1
𝑛 𝑦𝑖− ǁ𝑦𝑖

2

σ𝑖=𝑖
𝑛 𝑦𝑖− ҧ𝑦

 Cross validation
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3. Presentation of the new methods

3.1. Method M1

Perform real MCS
Sampling of 𝑥𝑀𝑀

Calculation of 𝑦𝑀𝑀

Create MM from 
𝑥𝑀𝑀 und 𝑦𝑀𝑀

Get CI from distribution of ത෤𝑦

Sampling of 𝑥𝑇𝑒𝑠𝑡
Calculate ෤𝑦𝐶𝑙𝑒𝑎𝑛
with meta model

Calculate ത෤𝑦

Perform virtual MCS (𝑚-times)
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3. Presentation of the new methods

3.1. Method M1

 SRS:                                                                          LHS:

 Works only for SRS

 Variance of mean heavily underestimated for LHS

 Reason: Error of the meta model 𝜀 = 𝑦 − ෤𝑦
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3. Presentation of the new methods

3.2. Method M2

 Impact of 𝜀 = 𝑦 − ෤𝑦:
𝑦 = ෤𝑦 + 𝜀
ത𝑦 = ത෤𝑦 + ҧ𝜀

𝑉𝑎𝑟 ത𝑦 = 𝑉𝑎𝑟 ത෤𝑦 + ҧ𝜀 = 𝑉𝑎𝑟 ത෤𝑦 + 2𝐶𝑜𝑣 ത෤𝑦; ҧ𝜀 + 𝑉𝑎𝑟 ҧ𝜀

 Assumption: Independence between ෤𝑦 and 𝜀 => 𝐶𝑜𝑣 ത෤𝑦; ҧ𝜀 = 0
𝑉𝑎𝑟 ത𝑦 = 𝑉𝑎𝑟 ത෤𝑦 + 𝑉𝑎𝑟 ҧ𝜀

 Problem: for LHS often 𝑉𝑎𝑟 ҧ𝜀 ≫ 𝑉𝑎𝑟 ത෤𝑦

 Solution: generate additional sample for 𝜀

 Since independence between ෤𝑦 and 𝜀 is assumed:
only P 𝜀 is required

 Approximation of 𝑓 𝜀 with kernel density estimation (KDE),
Approximation of P 𝜀 with numerical integration
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3. Presentation of the new methods

3.2. Method M2

Perform real MCS
Sampling of 𝑥𝑀𝑀

Calculation of 𝑦𝑀𝑀

Create MM from 
𝑥𝑀𝑀 und 𝑦𝑀𝑀, 

Calculate ෤𝑦𝑀𝑀

Get CI from distribution of ത෤𝑦

Sampling of 𝑥𝑇𝑒𝑠𝑡
Calculate ෤𝑦𝐶𝑙𝑒𝑎𝑛
with meta model

Calculate ത෤𝑦

Perform virtual MCS (𝑚-times)

Estimate 𝑓 𝜀𝑀𝑀 and 
𝑃 𝜀𝑀𝑀 (with KDE) 

Sampling of ෤𝑦𝑁𝑜𝑖𝑠𝑒
from 𝑃 𝜀𝑀𝑀

Calculate 
෤𝑦 = ෤𝑦𝐶𝑙𝑒𝑎𝑛 + ෤𝑦𝑁𝑜𝑖𝑠𝑒
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3. Presentation of the new methods

3.2. Method M2

 LHS

 Prediction of variance is better

 But: is the assumption correct?
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3. Presentation of the new methods

3.3. Method M3

 Idea: local cumulative density functions

 Comparison:
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3. Presentation of the new methods

3.3. Method M3

Perform real MCS
Sampling of 𝑥𝑀𝑀

Calculation of 𝑦𝑀𝑀

Create MM from 
𝑥𝑀𝑀 und 𝑦𝑀𝑀, 

Calculate ෤𝑦𝑀𝑀

Get CI from distribution of ത෤𝑦

Sampling of 𝑥𝑇𝑒𝑠𝑡
Calculate ෤𝑦𝐶𝑙𝑒𝑎𝑛
with meta model

Calculate ത෤𝑦

Perform virtual MCS (𝑚-times)

Describe relation 
between 𝜀 and ෤𝑦

Sampling of ෤𝑦𝑁𝑜𝑖𝑠𝑒 from 

relation between 𝜀 and ෤𝑦

Calculate 
෤𝑦 = ෤𝑦𝐶𝑙𝑒𝑎𝑛 + ෤𝑦𝑁𝑜𝑖𝑠𝑒
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3. Presentation of the new methods

3.3. Method M3

 LHS:
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3. Presentation of the new methods

3.4. Prediction of required sample size

 Certain size of CI must be achieved

 Size of CI known after MCS

 Methods can be used to predict required sample size

 Steps:

 Create MM, perform virtual MCS at different sample sizes

 Determine size of CI at different sample sizes

 Approximate evolution of CI size

 Calculate required sample size
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4. VMCS – A Framework for Application

 Framework to calculate CI from given MCS

 Easy to handle, flexible usage

 Basis: MCS from ProSi

VMCS Pre VMCS Exe VMCS SS Pred

Sample creation
for virtual MCS

Execution of virtual
MCS, calculation of CI

Prediction of
required sample size
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4. VMCS – A Framework for Application

 Output: xml-Format or visualization
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5. Summary

 Goal: Predict confidence interval of MCS with LHS more precisely

 Idea:

 Approximate system behavior with meta model

 Simulate MCS

 3 Methods:

 M1: Meta model

 M2: Meta model + 𝜀 from PDF / CDF

 M3: Meta model + 𝜀 from relation between ෤𝑦 and 𝜀

 SRS: M1, M2, M3,  LHS: M2, M3

 CI is predicted more precisely

 Framework for application was developed

 Outlook:

 Application of methods on turbomachinery example

 Use of other meta model types

 Performing of further tests
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Thank you for your attention!
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