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• In modern High-Pressure-Turbines the temperature in the main gas path exceeds the tolerable material temperature

• Therefore efficient cooling of turbine blades and vanes is needed with bleed air taken from the compressor

• Better understanding of the sensitivities of the cooling systems to geometric design parameters can help designing more 

efficient cooling systems

 Comparison of two stochastic methods to quantify the importance of design parameters
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Agenda

• Deterministic Model

• Parametrization of the Cooling System

• Introduction of probabilistic methods

• Numerical Setup of the Analysis

• Evaluation of the Sensitivity Analysis

• Summary and Outlook
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Mesh Generation

• Conversion of the 3D model into simplified 1D flow network

• Segmentation of the 3D system into characteristic flow 

elements connected by nodes

Physical equation system

• Conservation of mass

• Conservation of energy

• Conservation of momentum

Numerical Solver “Inflow” [2]

• Conservation of mass and energy in network nodes

• Differential equations of pipe flow based on Truckenbrodt [3]

• Empirical correlations for pressure loss and heat transfer 

coefficients
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Deterministic Model
Numerical Simulation of the cooling flow
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 Cubic splines enable definition of curves of any shape

Deterministic geometry definition based on cubic splines used for

• Positioning of components

• Definition of parameter distributions alongside components

 Coordinates of distribution points represent design variables
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Parametrization of the Cooling System
Deterministic Parametrization

Overview of components in modern cooling systems

Wall Film CoolingWebs Channel Ends Turbulators Trailing Edge Slot

 Extreme spline deformation due to displacement of points possible

 Point coordinates not suitable as probabilistic variables
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Parametrization of the Cooling System
Development of the Analytical-Coupling-Parametric
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Basic principal

• Introduction of independent, “spline-neutral” parameters constructed 

from the distribution points of the underlying spline

• A variation of these parameters imposes an incremental delta to the 

coordinates of the underlying distribution points

• Therefore the distribution points are not moved independently, but 

are coupled by analytical functions

 Characteristic of the original shape is preserved

Advantages

• Universally applicable regardless of the underlying spline shape

• Control over (selected) constructive criteria

• Easier interpretation of the relationships between design variables 

and resulting system response

Basic principal of the Analytical-

Coupling-Parametric for an exemplary 

spline 𝝓(𝒓)
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Parametrization of the Cooling System
Development of the Analytical-Coupling-Parametric

Symbol Function

𝜓 Rotation of the spline

𝜙𝑚 Reference position of spline

Δ𝑟𝑚𝑎𝑥 Movement in radial direction (applied as linear 

functions with Δ𝑟𝑚 = Δ𝑟𝑚𝑎𝑥 and Δ𝑟0 = Δ𝑟𝑁 = 0) 

𝑐Δ𝜙 Spline-Line-Distance-Scaling-Factor

Δ𝜙𝑚𝑎𝑥 Maximum Spline-Line-Distance

𝜙𝑚𝑎𝑥 Maximum spline value

𝜙𝑚𝑖𝑛 Minimum spline value

Control of limits 𝜙𝑚𝑎𝑥, 𝜙𝑚𝑖𝑛, used to construct linear function 

𝛥𝜙 𝜙 , as alternative to parameters 𝜙𝑚, 𝑐Δ𝜙 and Δ𝜙𝑚𝑎𝑥

Nomenclature used in the following

𝛹𝑤1,𝑡ℎ … Rotation angle of thickness

distribution of web 1

𝑤

ℎ 𝑚𝑎𝑥

𝑐1,𝑟𝑖𝑏
… Maximum rib-width to channel height

ratio in channel 1 
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Introduction of the Method

• One-at-Time approach first introduced by Morris [4]

• Provides two measures to investigate the influence 

of design variables on the output

Procedure for sensitivity analysis [5]

• Partition of each variable range in 𝑝 discrete levels

• Generation of 𝑁𝑠𝑖𝑚 = 𝑁 𝑁𝑣𝑎𝑟 + 1 samples

• Distinction of two samples in single variable

 Difference 𝑑𝑖 in output quantifies effect of variable

Evaluation of variable influence

• Modified mean effect 𝜇∗ [6]

• Standard deviation of effect 𝜎𝑖
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Introduction of Probabilistic Methods
Elementary-Effects Method
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Introduction of the Method

• Analysis-of-Variance based approach [5]

• Quantifies variable  importance using polynomial 

regression models [7]

Procedure for sensitivity analysis [7, 8]

• Generation of at least 𝑁𝑠𝑖𝑚 = 𝑁𝑣𝑎𝑟 + 1 samples

• Approximation of the system response ො𝑦

• Quantification of full regression model quality 𝑅2

 Reduced regression model neglecting a variable 

quantifies the variable importance 

Evaluation of variable influence

• Coefficient of Importance 𝐶𝑜𝐼

 Additional Analysis of Correlations 𝜌𝑖,𝑗 = (𝑥𝑖 , 𝑥𝑗)
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Introduction of Probabilistic Methods
Coefficient-of-Importance
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Numerical Setup of the Analysis
Definition of the Probabilistic Model
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Variables

Uniformly distributed and

uncorrelated

Ranges according to

Bunker [9]

Webs, Turbulators, 

Bends, Pull direction

 49 parameters

Results

Cooling mass flow

ሶ𝑚𝑐𝑙

Pressure rise
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Intentionally distorted

Model Description

• High-Pressure-Turbine Blade of second stage

• Multipass-System with rib-roughened walls

Boundary Conditions of 1D flow solver

• Wall temperature of elements in flow network

• Total pressure and temperature at entry node

• Static pressure at exit node
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Importance Ranking of the cooling mass flow

• Good agreement between the ranking of EEM and CoI

• Slight deviations in ranking within small order

• Amount of cooling mass flow dominated by Distance-Scaling 

Factor 𝑐∆𝑢
𝑤1 and reference position 𝑢𝑚

𝑤1 of the first Web

• No significant interactive effects detectable with EEM
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Evaluation of the Sensitivity Analysis
Reference Simulation

Elementary Effects Study

Nsim 500

pEEM 6

Monte-Carlo-Simulation

Latin-Hypercube-Sampling

Nsim 500
RSM 1 order (R2 = 0.935)

ξ = CoI, μ∗

 EEM und CoI equivalent for the investigated problem
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 Adjustment of flow cross sections throughout the system reduces 

pressure losses and thus increases mass flow
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Evaluation of the Sensitivity Analysis
Reference Simulation

Elementary Effects Study

Nsim 500

pEEM 6

Monte-Carlo-Simulation

Latin-Hypercube-Sampling

Nsim 500
RSM 1 order (R2 = 0.963)

Extraction of the

Correlation-Coefficient-

Matrix (Spearman)

Schematic view of flow channels

Correlation Analysis

• Flow cross section in nominal design slightly smaller in first channel

• Impact of 𝑐∆𝑢
𝑤1,𝑡𝑟

enlargement on first channel 

 Reduction of overall cross section

 Reinforcement of the convergent-divergent area change

• Impact of 𝑢𝑚
𝑤1,𝑡𝑟

enlargement

 Reduction of the area change in the entire system

Analysis-of-Variance allows interpretation of physical relations
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Evaluation of the Sensitivity Analysis
Influence of the Sampling Size on the Ranking for Cooling Mass Flow

Coefficient-of-Importance Elementary-Effects-Method

• Good agreement in overall ranking with decreasing 

sampling size

• Importance of 𝑐∆𝑢
𝑤1,𝑡𝑟

slightly depends on sampling size

 Well prediction related to linear system behavior

• Importance of 𝑐∆𝑢
𝑤1,𝑡𝑟

strongly depends on sampling size

• Clear scattering in ranking after 6th Variable compared to 

reference simulation

 EEM seems more sensitive to population size

• In general good agreement of CoI and EEM for the same population size   

• Importance ranking with CoI more stable even for very small sampling sizes
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Parametrization of the cooling system

• Deterministic parametric based on cubic splines proved not suitable for probabilistic approach

• Introduction of the Analytical-Coupling parametric for the variation of splines

• Easier interpretation of the physical relationships between geometric variations and resulting system behavior

Sensitivity Analysis of the cooling flow to geometric variations

• Variation of 49 uncorrelated, uniformly distributed variables within ranges taken from literature research

• Cooling mass flow dominated by parameters of first web

• Equalizing the flow cross sections throughout the system reduces pressure losses and increases mass flow

Comparison of Elementary-Effects Method and Coefficient-of-Importance

• Good agreement in the variable importance ranking for sufficiently large population size

• Importance ranking of Elementary-Effects Method allows more detailed investigation of the reason of importance

• Coefficient-of-Importance predicts variable importance more stable with decreasing sampling size for the considered 

problem and the assumed variable ranges and allows
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Summary
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Recommendation for the sensitivity analysis of cooling systems

• Examination of the sensitivities initially using variance-based approaches

 Quantification of variable importance based on the Coefficient-of-Importance

 Analysis of correlations to detect physical relationship between design parameters and the system response

• Additional investigation with the Elementary-Effects Method 

 In case the system behavior does not follow a polynomial regression model 

 Distinction between direct and interactive effect of a design variable is required

Motivation for future studies

• Comparison of EEM and CoI for problems with strong interactions between the variable input parameters

• Comparison of Sobol-Indices with EEM and CoI considering the detected sensitivities and numerical effort

• Sensitivity analysis of cooling systems with higher complexity such as systems including film and trailing edge cooling

• Investigation of differences between the sensitivities of vane and blade cooling systems 
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Outlook
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Thank you for your attention
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