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In the engineering uncertainty (aleatoric or epistemic) means

• Incomplete data 

• Experience based information

• Model error and imprecision

• Random variability

How would the robustness evaluation change if 

the lack of knowledge would be modeled?
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The way uncertainty is modeled affects the robustness evaluation

Assumption
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Aleatoric versus epistemic uncertainty

Aleatoric

Uncertainty

Randomness 
related to the 
physical quantities 
or the system

Irreducible

Data and 
probabilistic 
information 
available

Epistemic

Uncertainty

Incomplete 
knowledge and/or 
lack of useful data 

Reducible

(e.g. by gathering 
additional data, by 
refining models)

Interval 
information, max-
min, imprecise 
models
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Different methods/approaches for different uncertainty types
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• Life tests play a central role in the design of

mechanical systems subjected to cyclic loadings

• Experimental setup is characterized by

 Data becoming gradually available

 High variability in the data

• The usual approach to estimate the life model

parameters is maximum likelihood estimation

• No information on model parameter variability

• The lack of knowledge on model parameter can

be addressed using Bayesian methods
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Pure epistemic uncertainty quantification

Example 1: from deterministic life models to possibilistic approach
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𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)

• Frequentist interpretation: Bayes theorem is a tool to calculate the probability of an

event, given that another non-independent event has occured

• Bayesian interpretation: probability is interpreted as a measure of ʺdegree of belief ʺ.

Bayes rule links the degree of belief in an event A before and after accounting for

evidence.

 𝑃 𝐴 : the prior, the initial degree of belief in event A, before any data observation.

 𝑃 𝐴|𝐵 : the posterior, the degree of belief in 𝐴 after accounting for the evidence B

 𝑃 𝐵|𝐴 : the likelihood, describes the compatibility of the evidence with the event 𝐴.

Short overview on Bayesian probability theory
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Graphical interpretation of Bayes theorem
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Computational Statistics with Python, Duke University lecture notes
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Application: estimate parameter for fatigue life model

𝜎𝑎𝑚𝑝 ∙
1 − 𝑅

2

𝑚−1

= 𝐴 ⋅ 2𝑁𝑓
𝑏 𝑟

+ 𝐶 ⋅ 2𝑁𝑓
𝑑 𝑟 1/𝑟

𝜎𝑎
𝑤𝑎𝑙𝑘𝑒𝑟

• Experimental data provided 

𝜎𝑎
𝑤𝑎𝑙𝑘,𝑒𝑥𝑝 and 𝑁𝑓

𝑒𝑥𝑝.

• Dataset including runouts.

• Parameters to be estimated: 

A, b, C, d, r
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• Uninformative and independent priors for the parameters

𝐴~𝑈 0, 50000 , 𝐶~𝑈 0, 50000 , 𝑑~𝑈 −1, −0.01 , 𝑟~𝑈(0, 50)

• Uninformative prior for the model error: 𝜎~𝑈(0,∞)

• Available data: 105 Failures, 62 Runouts

• Bayesian calibration with Metropolis-Hastings algorithm

The uncertainty in the parameters can be modeled through priors
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Bayesian calibration provides variability information on the parameters
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CorrelationsMarginal Posterior Histograms

Add on in modeling lack of knowledge:

• More statistical information on parameter

distribution

• Correlation information
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Does the number of data points affect the variance prediction?

12Mixed aleatoric-epistemic uncertainty for jet engine applications

The original subset of data is subdivided in:

 5 LCF and 5 HCF test data

 15 LCF and 15 HCF test data

 25 LCF and 25 HCF test data

Prediction of variance can be done by calculating the Bayesian Posterior Prediction
Interval.
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Mixed aleatoric-epistemic uncertainty for jet engine applications



© MTU Aero Engines AG. The information contained herein is proprietary to the MTU Aero Engines group companies.

14Mixed aleatoric-epistemic uncertainty for jet engine applications

• 10 points are not 

sufficient to estimate the

entire variability in the

data set

• At least 30 points

should be provided.
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Conclusion

• Doing Bayesian analysis for fatigue data provides additional information on the

probability distribution of model coefficients

• Using flat uniform prior distributions should be avoided and weakly informative

priors should be used instead.

• The more runouts included in the dataset, the less informative the data is.

• Bayesian posterior predictive interval more conservative than -2σ MLE curve

(without confidence interval)
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• Model input parameter uncertainty the main focus.

• Only intervals available within which the true parameter value lies

• Late design phase  performing measurements is practically possible

• Focus on robustness
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Mixed aleatoric - epistemic uncertainty quantification

Example 2: Manufacturing tolerance modeling in the Secondary Air 

System (SAS)
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Input: 

• Boundary conditions 

dependent on performance 

parameters (pressure, 

temperature).

• Geometries of the different 

flow elements.

Output:

• Pressure and temperature at 

each chamber (in green).

• Mass flow rate in each flow 

line (in blue).
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Jet engine secondary air system (SAS) is responsible for the 

cooling of the internal parts of the engine.

Mass flow 1

Mass flow 2

Mass flow 5
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SAS uncertainties are mixed aleatoric and epistemic 
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12 aleatoric uncertain variables + 51 epistemic uncertain variables
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The double loop approach conceptually separate epistemic and 

aleatoric uncertainty
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Dakota user’s manual, Sandia National Laboratories.

𝑿𝒆 interval information

Method: 

• IVP (interval value probability)

𝑿𝒂  probability distribution

Method: 

• Monte Carlo

• Stochastic collocation method

𝑌 = 𝑔 𝑿 ,𝐰𝐢𝐭𝐡 𝑿 = 𝑿𝒂, 𝑿𝒆
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Aleatoric uncertainty = Shape of CCDF
Epistemic uncertainty = Interval width 
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• Narrowing tolerance on the

geometric features of SAS 

means a reduction of interval

width

• The total amount of cooling air

has less variability

• The tolerance can be changed

to produce an improvement with

respect to nominal

• There is a remaining variability

due to boundary conditions

variation and labyrinth gap

variation which is irreducible

Nominal
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• Parameter and model uncertainty should be modeled according to the available 

information

• Lack of knowledge can also be modeled through epistemic uncertainty

• Bayesian methods for calibration provides additional information useful for 

quantifying the variability, e.g. in life models

• Mixed aleatoric and epistemic uncertainty methods separate the uncertainties both 

conceptually and computationally and help obtain separately the influence of each 

uncertainty type
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Conclusion
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Thank you for your attention
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• PyMC3: Python library for Bayesian Statistical Modeling focusing on advanced
Markov Chain Monte Carlo (MCMC) algorithms

 Metropolis Hastings Algorithm (MH): 

• main oldest MCMC algorithm

 No-U-Turn Sampler (NUTS): 

• State of the art MCMC algorithm which uses first order gradient information of

the log-posterior density.

• Handles only continuous parameters. Suitable in our case where we have an

analytical likelihood function.

Software
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