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The way uncertainty is modeled affects the robustness evaluation

In the engineering uncertainty (aleatoric or epistemic) means

* Incomplete data _
- Experience based information ‘ Assumption

* Model error and imprecision
* Random variability

How would the robustness evaluation change If

the lack of knowledge would be modeled?
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Aleatoric versus epistemic uncertainty
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Different methods/approaches for different uncertainty types

Aleatoric  Epistemic Mixed

Monte Interval Evidence
Carlo Analysis Theory

é . Y
Bayesian

' Double
Stochastic Second
Collocation Order Loop
e Approach
hSiods Probability pproac
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Example 1: from deterministic life models to possibilistic approach
Pure epistemic uncertainty quantification

« Life tests play a central role in the design of
mechanical systems subjected to cyclic loadings SN-Curve

Cycle Stress vs Number of Cycles
« Experimental setup is characterized by
. . - Plagstic Region _-I-— Elastic Region —«l-— Infinite —-|
v' Data becoming gradually available —F————

_ N
. . oy . g AN
v High variability in the data I Feeerd
‘E'og i
%2 % Endurance
® Limit
 The usual approach to estimate the life model LT e e e e
parameters is maximum likelihood estimation remeererae e
* No information on model parameter variability
« The lack of knowledge on model parameter can
be addressed using Bayesian methods
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Short overview on Bayesian probability theory

P(B|A)P(A)
P(B)

P(A|B) =

* Frequentist interpretation: Bayes theorem is a tool to calculate the probability of an
event, given that another non-independent event has occured

« Bayesian interpretation: probability is interpreted as a measure of "degree of belief ™.
Bayes rule links the degree of belief in an event A before and after accounting for

evidence.

= P(A): the prior, the initial degree of belief in event A, before any data observation.
= P(A|B): the posterior, the degree of belief in A after accounting for the evidence B
= P(B|A): the likelihood, describes the compatibility of the evidence with the event A.
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Graphical interpretation of Bayes theorem
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Computational Statistics with Python, Duke University lecture notes
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Application: estimate parameter for fatigue life model

T I

walker Wahler-Basquin diagram
O-a

« Experimental data provided

O.awalk,exp and Nfexp.

« Dataset including runouts.
« Parameters to be estimated:

A, b, C, d, r * tests —B50°C, R=1, average curve (best fi)

Stress amplitude @ R=-1 [MPA]

10 100 1000 10000 100000 1000000 10000000

Cycles to failure []
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The uncertainty in the parameters can be modeled through priors

Uninformative and independent priors for the parameters

A~U(0,50000), C~U(0,50000), d~U(—1,—0.01), r~U(0, 50)

Uninformative prior for the model error: 6~U (0, )

Available data: 105 Failures, 62 Runouts

Bayesian calibration with Metropolis-Hastings algorithm
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Bayesian calibration provides variability information on the parameters

Marginal Posterior Histograms Correlations
ks T A Cc d sigma_lne
L [RRR A 1.000 -0.041 0.054 0.247
e e o C -0041 1000 -0.984 0.034
W:W_n_m mn:u_n:mme d 0054 -0984 1.000 -0.022
sigma_lne 0.247 0.034 -0.022 1.000
—0.08 -
010 ]
012 ]
Add on in modeling lack of knowledge: ——
* More statistical information on parameter 016 |
distribution 018 ]
* Correlation information 020 ]
1000 1500 2000 . 2500 3000 3500
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Does the number of data points affect the variance prediction?

The original subset of data is subdivided in:
v 5 LCF and 5 HCF test data
v' 15 LCF and 15 HCF test data
v' 25 LCF and 25 HCF test data

Prediction of variance can be done by calculating the Bayesian Posterior Prediction
Interval.
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Stress Amplitude
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« full set of data
6x10° 97.7% BCI Posterior Predictive for 5+5 subset data
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Conclusion

« Doing Bayesian analysis for fatigue data provides additional information on the
probability distribution of model coefficients

» Using flat uniform prior distributions should be avoided and weakly informative
priors should be used instead.

 The more runouts included in the dataset, the less informative the data is.

« Bayesian posterior predictive interval more conservative than -2c MLE curve
(without confidence interval)
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Example 2: Manufacturing tolerance modeling in the Secondary Air
System (SAS)

Mixed aleatoric - epistemic uncertainty quantification

Model input parameter uncertainty the main focus.
Only intervals available within which the true parameter value lies

Late design phase - performing measurements is practically possible
Focus on robustness
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Jet engine secondary air system (SAS) is responsible for the
cooling of the internal parts of the engine.

2.stage 3.stage |nput:
‘ S — <> o
. . :.'" N\ 9’ P Q R ! \ U ‘ M.|||stre.||| ° Boundary Cond|t|0ns
-'51311(4*?:45 B - 443 i v dependent on performance
TR ég‘:g\{’:}ﬂ& o 7 r’d’ : parameters (pressure,
‘ i L 0 » ~——_
A8 8l & <8>\ temperature).
| Legend « Geometries of the different
| v L Chamber
| J Boundary flow elements.
‘ - condition
i AL e outpu
N ﬁg == i %) devices *  Pressure and temperature at
Ay AL ‘ m - H
I e ™S . - 2 Q> | each chamber (in green).
e " "BMass flow 5 I\ ( J )
 Mass flow rate in each flow
line (in blue).
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SAS uncertainties are mixed aleatoric and epistemic

Input Parameters Uncertainty Source Available Information | Categorization
Performance parameters Ambient conditions Expert Information Aleatory
Engine-to-engine variations Legacy engines
Deterioration
Geometric variables Manufacturing tolerances Technical Drawings Epistemic
(except rotor-stator gaps)
Rotor-stator gaps Manufacturing tolerances Technical Drawings Aleatory
Engine operation -

12 aleatoric uncertain variables + 51 epistemic uncertain variables
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The double loop approach conceptually separate epistemic and
aleatoric uncertainty

Y = g(X), WithX — [Xa:Xe]

(— Outer loop epistemic variable UQ <IP X e - interval information
Method:

* |IVP (interval value probability)

Inner loop aleatory

variable UQ
= = X, - probability distribution
Method:
%> Simulation Run — « Monte Carlo

» Stochastic collocation method

Dakota user’s manual, Sandia National Laboratories.
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Aleatoric uncertainty = Shape of CCDF
Epistemic uncertainty = Interval width

1.0;

0.8;

0.61

Pr(>y)

0.2

Nomina

Sum of mass flows 1, 2, 5
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Narrowing tolerance on the
geometric features of SAS
means a reduction of interval
width

The total amount of cooling air
has less variability

The tolerance can be changed
to produce an improvement with
respect to nominal

There is a remaining variability
due to boundary conditions
variation and labyrinth gap
variation which is irreducible
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Conclusion

« Parameter and model uncertainty should be modeled according to the available
information

« Lack of knowledge can also be modeled through epistemic uncertainty

 Bayesian methods for calibration provides additional information useful for
guantifying the variability, e.g. in life models

* Mixed aleatoric and epistemic uncertainty methods separate the uncertainties both
conceptually and computationally and help obtain separately the influence of each
uncertainty type
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Thank you for your attention
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Software

« PyMCa3: Python library for Bayesian Statistical Modeling focusing on advanced
Markov Chain Monte Carlo (MCMC) algorithms

= Metropolis Hastings Algorithm (MH):
* main oldest MCMC algorithm

= No-U-Turn Sampler (NUTS):
- State of the art MCMC algorithm which uses first order gradient information of
the log-posterior density.

« Handles only continuous parameters. Suitable in our case where we have an
analytical likelihood function.
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