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Motivation 
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Latin Hypercube Sampling 

CHARACTERISTIC: 
 each realization represents equal probability ΔP 

 

APPROACH: 
 define number of realizations nsim 

 determine ΔP=1/nsim wide intervals on F(b) 

 select one value at random from each interval 

 

PROPERTIES: 
 good representation of cdf with “few” realizations – 

variance reduction 

 more stable analysis outcomes than random 

sampling 

 easier implementation than stratified sampling 

methods 

 mean value and distribution function can be 

estimated unbiased 
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extended Latin Hypercube Sampling 

INITITAL POSITION 
 define group size ng and level l 

 use “classic” LHS with nsim,0= ng realizations 

 

APPROACH 
 Use “small” group size and reach the desired nsim,N by extension level times 

 

IMPLEMENTATION 
 reduplicate the intervals on F(b) if necessary 

 per extension step only ng values are added 

 select one value at random from each free interval 

 selection of the interval is based on D* as the largest negative distance 

between continuous and discrete cdf for each original interval 
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Correlation control 

Iterative Restricted Pairing1 

Figure 2: CC-Algorithm 

1 on the basis of: Ramesh A. Dandekar, Michael Cohen, and Nancy Kirkendall. Sensitive micro data protection using 

latin hypercube sampling technique. In Inference Control in Statistical Databases, page 117–125. Springer, 2002. 
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generation of standard normal distributions 

 

 

 

 

 

 

 

 

 

 

 

with 1000 repetitions and comparison with LHS of same size 

Evaluation of eLHS 

level group size 

5 10 20 

3 15 30 60 

4 20 40 80 

6 30 60 120 

8 40 80 160 

10 50 100 200 

12 60 120 240 

13 65 130 260 

16 80 160 320 

Table 1: Experimental matrix of eLHS 
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Correlation of input variables 

 iterative Restricted Pairing leads to very low 

mean absolute correlation errors of maximal 

10−2 for LHS and eLHS 

 correlation error of eLHS is in the majority of 

cases below that one of the LHS 

 for high correlation values at low group size 

correlation control algorithm is not able to 

deliver the same performance for the eLHS as 

for the LHS with correspondingly l times 

higher number of realizations. 
DPW 2014, Schmidt 
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K-S-test of goodness of fit 

Reproduction of the distribution function 

Dhat=0.0861 vs. Dcrit=0.3382 (significance level α=0.05) 

2 L. Sachs and J. Hedderich. Angewandte Statistik. Springer, 13. edition, 2009 
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Reproduction of mean value 

 level 4, 8 and 16 lie closely one upon the other for eLHS and LHS 

 characteristic shape of the deviations due to the allocation of intervals 
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Application of eLHS in Sensitivity analysis  

 test case IC09 delivered by Rolls-Royce Germany (RRD) 

 resembles 2 stages of a typical high pressure compressor (hpc) 

 boundary and initial conditions are given by radial profiles at inlet, fixed mass 

flow at the outlet  

 data transfer between the blocks is done by mixing planes 

 

Stator 2 

Rotor 3 

Stator 3 

Rotor 4 
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Test case IC09 

 geometric parameterization was done with the parameter model of Heinze et al.3; 

geometry variations with delta-parameter model of Lange et al.4 

 one averaging section in spanwise direction is sufficiently accurate, see Lange et al.5 

axpos – axial position leading 

 edge point 

tanpos  – tangential position leading 

  edge point 

c  – chord length 

γ  – stagger angle 

αLE  – angle at leading edge 

αTE  – angle at trailing edge 

tmax  – maximum thickness 

xtmax  – position of maximum thickness 

wmax  – maximum camber 

xwmax  – position of maximum camber 

aTE  – large semi axis trailing edge 

bTE  – small semi axis trailing edge 

aLE  – large semi axis leading edge 

bLE  – small semi axis leading  edge 

fillet  – fillet radius 

DPW 2014, Schmidt 
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Sensitivity analysis 

 variation of Rotor 3 only  

 always the same grid setup was used 

 main characteristics of the MCS: 

sampling method: extended Latin Hypercube (eLHS) 

correlation control: iterative Restricted Pairing 

shots: ng=30, level l=4 

 setup, control and evaluation of the MCS with ProSi 
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Isentropic compressor efficiency ηis* of the two-stage compressor 

Spearman rank correlation 
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 CoI is based on meta models and calculated with the Coefficient of 

Determination R2 

 

 

 

 assessment of the quality of the response surface with cross-validation: 

Monte Carlo cross-validation (MCCV) by Beschorner6 with splitting ratio of 

0:85 and number of runs of 1000 

 result quantity total pressure ratio π of the two-stage compressor 

 approximation with a first order polynomial without mixed terms in each level 

Coefficient of Importance (CoI) 

level 1 2 3 4 

SCR 1:813 3:563 5:375 7:063 

R2 0:958 0:913  0:915 0:899 

CoDMCCV 0:748 0:834 0:876 0:865 

average R2 - CoDMCCV 0:853 0:874 0:895 0:882 
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 biggest advantages over LHS if extension is considered before the start of a 

probabilistic simulation 

 method does not maintain the LHS design in each level 

 a more variable extension is achieved compared to duplication of the 

realizations 

 If at a certain level all intervals are occupied, the extended sample 

corresponds to a LHS 

 Each extension represents an LHS design by itself 

 application of iterative RP leads to low deviations from the target correlation 

for LHS and eLHS despite small number of realizations and high 

correlations 

 with the sample extension method it is possible to use the statistical quality, 

e.g. confidence intervals, of certain statistical measures as a termination 

criterion  

 extension results in an increased gain of information from a probabilistic 

analysis 

Summary 
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