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Uncertainty Management for Robust Industrial Design in Aeronautics

» The objective of UMRIDA is to upgrade the TRL of UQ in aeronautics to level 5-6

» Within UMRIDA different methodologies to deal with UQ will be investigated by research
groups from:

- 6 European airframe and engine industries
- 13 major aeronautical research establishments and academia

@VUB:
UQ methods for efficient handling of large number of uncertainties
» Reduced basis approach using polynomial chaos method

» In Doostan et al. (2007) such an approach was used within the context of intrusive
Polynomial Chaos

» Here the methodology is extended to non-intrusive PC and is applied to 2D and
3D industrial applications
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Motivation

»  Uncertainty in physical properties, input data and model parameters
result in uncertainties in the system output.

»  For the design refinement and optimization, it is necessary to include all
uncertainty information in the output results using UQ schemes.

»  Many complex CFD calculations (e.g. Turbomachinery) require 3D fine
computational mesh, small time-step and high-dimensional space for
stochastic analysis.

These dramatically increases the computational cost that can be partially
reduced using efficient UQ schemes.
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Motivation

» Classical uncertainty quantication schemes (e.g., Monte Carlo, polynomial
chaos) suffer from the curse of dimensionality.

» To overcome curse of dimensionality several schemes have been
proposed. Examples are:

 Efficient sampling methods(e.g. Sparse sampling)
J Sensitivity analysis (e.g. Sobol indicies)
 Surrogate modeling (e.g. Kriging)

(d Model Reduction (e.g. GSD)

[ Multilevel Monte Carlo

» In practice a single technique may not be sufficient, and combination of
techniques need to be employed.

» In this study we focus on the “POD-based Model Reduction” approach.
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UQ using mtrusive polynomial chaos

1D advection equation is given by Pil= (p+n)!
All uncertainties were pin!
. . du du —ord £ PC
introduced in the — +o—=0;

n=#uncertainties

governing equation. We assume uncertainty in u at boundary.

After expansion i.e.

~v

u(x, )= u, () ({)

System of equations was i=0

solved substitution in the original equation

Needed to rewrite code Z dui 5 du;,

. dt <

Not possible for complex o

3D applications Multiplying with ¢ and performing the scalar products. one obtains
duy, duy,

—0: k=0,1,2,3....P

dt L dx
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Non-intrusive UQ using polynomial chaos

» Uncertain input parameters: IC, BC, geometry, modeling parameters

. & P+1=(p+ny)!/p/n/
» PCexpansion:  u(x,{) =Y u,(x)y,({) p=order of PC
i=0

n~=# uncertainties

Input parameters:
a;=a,+a;, %G, Computational

Output solution

— ES
ay=a,yta, G,

model u(x,8) =3, (W)

— £
ans_anO-l'anl CI’IS

» Statistical solution M ean = UOP , ,
Variance =), u;(x)” < 7 >
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Non-intrusive UQ using polynomial chaos (contd)

» PC terms can be calculated via
1. Numerical quadrature

. . - P This integral can be
PC approximation of the solution: u(x,{)=Y"u,(0%,({)  solved using numerical
i=0 quadrature method

Inner product:y, (x)<wl.2> = (u(x, W () = [uCe, W () F (€ )dif

S
S (0 =3 W op (W,
<l//i > J=1
Where: S=(p+1)"" deterministic samples
[ @isPDFof ¢ p=2,ns=5 =»243 samples
é,j are quadrature points pZZ,HSZIO 959049 Samples

w; :are weights of quadrature points
u;(x): are sample solution

p=3,ns=10 =» 1048576 samples

# deterministic samples increases exponentially with increasing pc order and n;
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Non-intrusive UQ using polynomial chaos (contd)

2. Regression method
» PC approximation of the solution >, u,(x)y;(¢) =u(x.{)

uo(x)Wo(;)+”1(x)l//1(()+ --------- +”P(X)I//P(;) =u(x, ;)
Oversampling

Po(C%) - i€ - wp(C)\ [ uo() u(; ¢°) o
: - : : : S=2(P+1) deterministic samples

e:'o('c-") i (¢F) p(CF) u‘i(,a') = u(.r;cS) p=2,ns=5 =242 samples
: e : : p=2,ns=10 =»132 samples
A\to(¢") - ul¢") - p(¢")) \up(z) u(:¢") p=3,n8=10 =» 572 samples
\I,?Es) PC coefficients Solution samples

» Matrix can be solved by over sampling for PC coefficients u; (x)

# deterministic samples increases exponentially with increasing pc order and n;
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Reduced basis approach:

» The POD-based model reduction is a method that provides an optimal basis (or
modes) to represent the dynamic of a system.

» Several model reduction techniques have been proposed for uncertainty quantitation.
Two informative examples are:

O Generalize Spectral Decomposition (GSD) Nouy (2007)

L An intrusive model reduction technique for chaos representation of a SPDE
Doostan et al. (2007)

» The model reduction used here is a POD-based model reduction scheme, similar to
the one proposed by Doostan et al. (2007), but in non-intrusive framework.
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Reduced basis approach:

Basic idea: Restrict the number of PC expansions coefficients that have to
be calculated.

» Ideal expansion:

Karhunen-Loeve = POD (6. 8) = (u(x) = Z:l:” (0z,(6)

= POD eigenvalues decay very fast.
= First few eigenvalues contain all the information

m=very small (# of dominating eigenvalues of POD) |:> few u'to calculate

POD requires covariance R(x,y) of u which is unknown!

R(x, y) = [ (x, &)= (o)) @(y, )= (u(»))) PDF.d{
¢
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Reduced basis approach (contd)

» Calculate PC coefficients (u,(x)) on a coarse mesh
» Calculate covariance matrix R(x,y)

Rigy, @5) = up(x;))uk(z;) < ) >

» Karhunen-Loeve expansion (POD)
- Few u.(x) to calculate on a fine grid
= Solution on fine grid can be written as:

m

u(z; ¢) = Z i()z(C)

1=0

> 2(m+1) samples are needed in fine grid, where m<<P

Solution in coarse

Covariance

Idea is to extract the
optimal orthogonal basis
via cheap calculations
on a coarse mesh and
then use them for the
fine scale analysis.

= N * ; —
> Statistics: < (z:€) >= 1o 0% = Y i )" < zp,2 >

Final solution in
fine grid
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Test casel:
RAE2822 Airfoil, Geometrical uncertainty

a) unit normal vectors

I T
I A A T O O A

0.1 T T T T

Covariance function

005~

ylc
(=]
1

-0.05

-0.1 | | | | 1 1 | 1 1 | |

Geometry realization — °®f
using KL expansion

yic

-0.05 -

N4
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Airfoil geometry realizations with correlation
length and variance:
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Computational parameters for RAE2822
seometrical uncertainty

:\ v v v v v v v v v v

A0A=2.79°
Mach #=0.734
Re # = 6.5x10°

Uncertain profile with10 terms in KL expansion and

c’=0.001 & b=0.05

Polynomial order: 3

Coarse grid: 3.0x10°

Fine grid: 4.4x10%

Covariance: p, pu, pv and pE
Turbulence model: Spallart Allmaras
Convective terms: 2nd-order upwind
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Results (€ =0.9): Mach field Rt <

€ : measure of dominating eigenvalues

a) Mach Field (Full, ns=10, p=3) b) Mach Field (Red., ns=10, m+1=10) ¢) Mach Relative Error(%)
1 1
05

L £
> >

O L

-05
-05 0 05 1 15 =05 0 05 1 15

x/c x/c
a) Mach std (Full, ns=10, p=3)

b) Mach std (Red., ns=10, m+1=10)

ylc

x/c x/c
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Results (€ =0.9): Pressure field

a) Pressure Field (Full, nS=1O, p=3) b) Pressure Field (Red., ns=10, m+1=10) ¢) Pressure Field Relative Error(%)
1 . . - 1
05 ¢ 05
L L L
> > >
(¢ 0
-05¢ -05}|
4 4
x 10 x 10
-0.5 0 0.5 1 15 -0.5 0 0.5 1 1.5
x/c x/c x/c
a) Pressure std (Full, n5=10, p=3) b) Pressure std (Red., n5=10, m+1=10) ¢) Pressure std Relative Error(%)
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x/c x/c
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Results (€ =0.9): Pressure coefficient

-C

e (%)

a) Cp (n5=10, p=3, m+1=10)

.... ° Upper (Red.)
Upper (Full)

Lower (Red.) 1
Lower (Full)
Exp.

0 0.2 04 06 08 1
x/c

c) Cp Relative Error(%)

x/c

b) €, std (n,=10, p=3, m+1=10)

- Uertret) Coarse grid: 3.0x103

Upper (Full)
Lower (Red.)

i ot ' Fine grid: 4.4x10*
| 2 orid ratio ~= 14

0.25

018
CPU time:
i Classical PC:
0 572 samples in fine mesh
=572t
€, std Reative Eror)
| ‘ ~ ] Reduced approach:
ol 1 572 samples in coarse grid
ol error— 8.7236% | +20 samples in fine grid
£ w error= 15.3613% 1 =20t+572t/14

~ =65t
= ~ 9 times efficient

x/c
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Results (€ =0.99):Mach field

a) Mach Field (Full, n —10 p=3) b) Mach Field (Red., n —10 m+1=22) c) Mach Relative Error(%)
1 T T 1
05 0.5
L £ L
> > >
or 0
-05 -0.5
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
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a) Mach std (Full, ns=10, p=3) b) Mach std (Red., ns=‘|O, m+1=22) ¢) Mach std Relative Error(%)
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Results (€ =0.99): Pressure field

057

ylc

a) Pressure Field (Full, n =10, p=3)
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a) Pressure std (Full, n =10, p=3)
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b) Pressure Field (Red., n5=10, m+1=22)
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Results (€ =0.99): Pressure coefficient

a) Cp (ns=10, p=3, m+1=22)

e (%)

.
oooo
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Lower (Full)
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c) Cp Relative Error(%)
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.
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% difference in mean and std of pressure coefficient

Become more efficient for higher order PC
(If more accurate statistics are needed)
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02

d) Cp std Relative Error(%)

08 1
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error= 2.1165%

error= 1.4653%
MAM_W’J\”‘-
0 0.2 04 0.6 0.8 1

x/c

Coarse grid: 3.0x10?
Fine grid: 4.4x10*
2 Grid ratio ~= 14

CPU time:
Classical PC:

572 samples in fine mesh
=572t

Reduced approach:

572 samples in coarse grid
+44 samples in fine grid
=44t+572t/14

~=85t

=> ~ 6-7 times efficient
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Test case: Transonic axial flow compressor

(Rotor37)

» Uncertain parameters (Boundary conditions):

1. Total pressure profile at inlet: uniform distribution, variance = 5% of mean

2. Static outlet pressure: uniform distribution, variance =2% of mean
Rotational speed:17188 rpm
Polynomial order: 2
Coarse grid: 1.18x10°
Fine grid: 8.43x10°

Covariance: P

Samples of total i;;/et pressure profile

Turbulence model: Spallart Allmaras

Convective terms: 2nd-order upwind
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Test case2: Rotor37, Deterministic solution

NUMECA Static Pressure (Pa)
Pressure field on:

 Hub

e 25% span of blade
* Mid span of blade
e 75% span of blade

* tip

N
[

N
T

-
o]
T

Pressure distribution around
the blade at mid span

-
[=2]
T

Static Pressure
o &

-
i

od
[

o
o
T

o
o

1 1 1 1 1
0.01 0.02 0.03 0.04 0.05 0.06
Arc length

o
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Results (¢

22

=0.9): Rotor37, Non-deterministic

18

> =
T

Mean Static Pressure [Pa])

08

—(red) : Deterministic
--(blue) : Classical PC
* : Reduced basis

L 1
004 005 008

L
002

o0
Arc length

Static Pressure std [Pa]

12000 —5

10000 -

g

B,

g

- : Classical PC
* . Reduced basis

i
0o

n L L i
002 0m 004 005 00

Arc length

Mean and standard deviation of static pressure around the blade at mid span

CPU time

Classical PC method : total 12 samples in fine grid =» CPU time =12t

Reduced approach : 6 samples in fine grid + 12 samples in coarse grid
=>»CPU time = 6t +12t/8 = 7.5t (almost two times efficient !!!)

e

(i.e., geometrical uncertainties)

Become more efficient if one consider high dimensional stochastic problems!!!
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Conclusion and future work

>
>
>
>
>
>
(-

The performance of a non-intrusive POD-based model reduction scheme

for uncertainty quantification is evaluated for 2D and 3D cases using
Fluent and NUMECA software.

The reduced-order model is able to produce acceptable results for the
statistical quantities.

Memory requirement and CPU time for the reduced model is found to be
much lower than classical methods.

The performance of the model reduction scheme is more visible in very
high dimensional stochastic problems.

Additional computations for more complex cases involving large number
of random variables will be performed.

Higher order moments will be evaluated.
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