



Faculty of Mechanical Engineering

Institute of Fluid Mechanics

Chair of Turbomachinery and Jet Propulsion

## 4. Dresdner Probabilistik-Workshop Probabilistic Tutorial

# "From the measured part to the probabilistic analysis"

### Part I

Matthias Voigt (TU Dresden)







Faculty of Mechanical Engineering Institute of Fluid Mechanics Chair of Tu

#### Part I

- 1. Introduction
- 2. Basic Statistics
- 3. Probabilistic methods (MCS)

#### Part II

- 4. Optical measurement (3D scanning)
- 5. Identification of geometrical Parameter and statistical analysis of scanned blades
- 6. Probabilistic Model Meshmorphing
- 7. Generation of probabilistic samples
- 8. Analysis of probabilistic FE simulation Part III
- 9. Analysis of cold-hot transformation
- 10. Deterministic CFD Modell
- 11. Analysis of probabilistic CFD simulation
- 12. Conclusion





#### Part I

- 1. Introduction
- 2. Basic Statistics
- 3. Probabilistic methods (MCS)

### Part II

- 4. Optical measurement (3D scanning)
- 5. Identification of geometrical Parameter and statistical analysis of scanned blades
- 6. Probabilistic Model Meshmorphing
- 7. Generation of probabilistic samples
- 8. Analysis of probabilistic FE simulation Part III
- 9. Analysis of cold-hot transformation
- 10. Deterministic CFD Modell
- 11. Analysis of probabilistic CFD simulation
- 12. Conclusion





Faculty of Mechanical Engineering

Institute of Fluid Mechanics · Chair of Turbomachinery and Jet Propulsion

Two turbine blades from same engine...



### ... but with clearly different life.

#### Massachusetts Institute of Technology, Prof. David L. Darmofal

Matthias Voigt, TU Dresden Probabilistic Tutorial "From the measured part to the probabilistic analysis"











#### Part I

- 1. Introduction
- 2. Basic Statistics
- 3. Probabilistic methods (MCS)

Part II

- 4. Optical measurement (3D scanning)
- 5. Identification of geometrical Parameter and statistical analysis of scanned blades
- 6. Probabilistic Model Meshmorphing
- 7. Generation of probabilistic samples
- 8. Analysis of probabilistic FE simulation Part III
- 9. Analysis of cold-hot transformation
- 10. Deterministic CFD Modell
- 11. Analysis of probabilistic CFD simulation
- 12. Conclusion



## Boundary condition for probabilistic simulations



Faculty of Mechanical Engineering Institute

Institute of Fluid Mechanics · Chair of Turboma

Chair of Turbomachinery and Jet Propulsion



deterministic model



Chair of Turbomachinery and Jet Propulsion

result values:

deflections w<sub>m</sub>, w<sub>i</sub>



Faculty of Mechanical Engineering Institute of Fluid Mechanics

beam with a semibeam S P  $W_m$   $L_1$   $L_2$   $W_i$   $W_i$   $W_i$   $W_i$   $W_i$   $W_i$  $W_i$ 

input values:

- beam height H
- beam width W
- E-Modulus
- point load P
- point load P position S

Matthias Voigt, TU Dresden Probabilistic Tutorial "From the measured part to the probabilistic analysis"



## Boundary condition for probabilistic simulations



Faculty of Mechanical Engineering · Insti

Institute of Fluid Mechanics

Chair of Turbomachinery and Jet Propulsion





Reason for scatter









Faculty of Mechanical Engineering

Institute of Fluid Mechanics Chair of Turbomachinery and Jet Propulsion

[1]

• arithmetic mean:

$$\overline{b}_{ri} = \frac{1}{n_{sim}} \sum_{k=1}^{n_{sim}} b_{ri,k}$$

222

- non-robust estimator, outlier sensitive
- median: is that value of the point that divides the area below the probability density function into two pieces of equal size
   a robust measure of central tendency
- modal value or mode: is that value of the data set that occurs with the greatest frequency, it is not necessarily unique.











![](_page_12_Picture_2.jpeg)

[1]

Faculty of Mechanical Engineering Institute of Fluid Mechanics Chair

• standard deviation:

$$\sigma(\mathbf{b}_{ri}) = \sqrt{Var(\mathbf{b}_{ri})} = \sqrt{\frac{1}{n_{sim} - 1} \sum_{k=1}^{n_{sim}} (b_{ri,k} - \overline{b}_{ri})^2}$$

• coefficient of variation:

$$\delta(\mathbf{b}_{ri}) = \frac{\sigma(\mathbf{b}_{ri})}{\overline{b}_{ri}}$$

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_4.jpeg)

![](_page_14_Picture_0.jpeg)

Kolmogorow-Smirnow-Test

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_2.jpeg)

- the Anderson-Darling-Test is a modification of the Kolmogorow-Smirnow-Test
- this gives more weight to the tails than the K-S test does

$$A^{2} = -n_{sim} - \frac{1}{n_{sim}} \sum_{k}^{n_{sim}} (2k-1)(\ln F_{s}(b_{k}) + \ln(1 - F_{s}(b_{n_{sim}+1-k})))$$

- $F_s$  is the cumulative distribution function of the test data
- $\mbox{ tables of critical values for }A$  e.g. are available in [4] for different distributions

![](_page_16_Picture_0.jpeg)

## Boundary condition for probabilistic simulations

![](_page_16_Picture_2.jpeg)

Faculty of Mechanical Engineering · Institu

Institute of Fluid Mechanics

Chair of Turbomachinery and Jet Propulsion

![](_page_16_Figure_6.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_2.jpeg)

[1]

Faculty of Mechanical Engineering

Institute of Fluid Mechanics Chair of Turbomachinery and Jet Propulsion

### Pearson's correlation coefficient

$$r_{\mathbf{b}_{ri}\mathbf{b}_{rj}} = \frac{Cov(\mathbf{b}_{ri}, \mathbf{b}_{rj})}{\sqrt{Var(\mathbf{b}_{ri})}\sqrt{Var(\mathbf{b}_{rj})}}$$

$$Cov(\mathbf{b}_{ri}, \mathbf{b}_{rj}) = \frac{1}{n_{sim} - 1} \sum_{k=1}^{n_{sim}} (b_{ri,k} - \overline{b}_{ri})(b_{rj,k} - \overline{b}_{rj})$$

![](_page_17_Figure_8.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_2.jpeg)

Spearman's Rank correlation coefficient

![](_page_18_Figure_5.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_2.jpeg)

Faculty of Mechanical Engineering

Institute of Fluid Mechanics Chair of Turbomachinery and Jet Propulsion

![](_page_19_Figure_5.jpeg)

![](_page_20_Picture_0.jpeg)

## Boundary condition for probabilistic simulations

![](_page_20_Picture_2.jpeg)

Faculty of Mechanical Engineering · Instit

Institute of Fluid Mechanics

Chair of Turbomachinery and Jet Propulsion

![](_page_20_Figure_6.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_2.jpeg)

#### Part I

- 1. Introduction
- 2. Basic Statistics
- 3. Probabilistic methods (MCS)

Part II

- 4. Optical measurement (3D scanning)
- 5. Identification of geometrical Parameter and statistical analysis of scanned blades
- 6. Probabilistic Model Meshmorphing
- 7. Generation of probabilistic samples
- 8. Analysis of probabilistic FE simulation Part III
- 9. Analysis of cold-hot transformation
- 10. Deterministic CFD Modell
- 11. Analysis of probabilistic CFD simulation
- 12. Conclusion

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_2.jpeg)

n<sub>sim</sub> independent structural analyses output variables random number generation 1.dat CPU 1  $\mathbf{y}_1$ b, CPU 2 2.dat  $b_{2}$ CPU 3 3.dat  $\mathbf{y}_2$  $b_3$ CPU 4 4.dat  $b_4$  $\mathbf{y}_{\mathbf{n}}$  $b_{n_{h}}$  $n_{sim}.dat$ CPU n<sub>sim</sub>

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_2.jpeg)

Application of **Monte-Carlo** methods for probabilistic investigations using **optimized LHS** under consideration of **input parameter correlation** 

| Result of probabilistic<br>Simulation                                                   | Sensitivities                                                                                                                                                                                                              | Robustness | Optimization | Probability<br>of failure        |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|----------------------------------|
| <ul><li>pdf of input variables</li><li>roughly known</li><li>(as in industry)</li></ul> |                                                                                                                                                                                                                            |            |              |                                  |
| - precisely known (rarely)                                                              |                                                                                                                                                                                                                            |            |              |                                  |
| required number of<br>deterministic runs                                                | <ul> <li>almost independent to no. of parameters</li> <li>common: n<sub>sim</sub> = 50100</li> <li>minimum: n<sub>sim</sub> = no. of par + 1020</li> <li>better confidence intervals for higher n<sub>sim</sub></li> </ul> |            |              | $P_f \approx \frac{10}{n_{sim}}$ |
| output<br>- one single MC Simulation<br>provides all result<br>quantities               | 010 054                                                                                                                                                                                                                    |            |              |                                  |

![](_page_24_Picture_0.jpeg)

Correlationen

![](_page_24_Picture_2.jpeg)

Faculty of Mechanical Engineering Institute of Fluid Mechanics Chair of Turbomachinery and Jet Propulsion

![](_page_24_Figure_4.jpeg)

![](_page_25_Picture_0.jpeg)

Correlationen

![](_page_25_Picture_2.jpeg)

Faculty of Mechanical Engineering

Institute of Fluid Mechanics · Chair of Turbomachinery and Jet Propulsion

![](_page_25_Figure_5.jpeg)

![](_page_26_Picture_0.jpeg)

Robustness

![](_page_26_Picture_2.jpeg)

![](_page_26_Figure_3.jpeg)

### 2D Ant Hill Plot

![](_page_27_Picture_0.jpeg)

Meta model

![](_page_27_Picture_2.jpeg)

![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_0.jpeg)

Meta model

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

![](_page_29_Picture_0.jpeg)

### Probability of failure

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_30_Picture_0.jpeg)

### advantage

in the application of probabilistic methods

- sufficient database for stochastic variables required
- increased engineering time
  - parametric model
  - validation of results
  - interpretation of results
- high computational cost due to multiple analysis

- probability to failure (no successive conservatism in the assessment)
- robustness of design
- sensitivity of result values w.r.t. stochastic variables
- cheaper design:
  - increased tolerances if possible
  - decreased tolerances if necessary

![](_page_30_Picture_20.jpeg)

![](_page_30_Picture_21.jpeg)

problems

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_2.jpeg)

Part I

- 1. Introduction
- 2. Basic Statistics
- 3. Probabilistic methods (MCS)

### Part II

- 4. Optical measurement (3D scanning)
- 5. Identification of geometrical Parameter and statistical analysis of scanned blades
- 6. Probabilistic Model Meshmorphing
- 7. Generation of probabilistic samples
- 8. Analysis of probabilistic FE simulation Part III
- 9. Analysis of cold-hot transformation
- 10. Deterministic CFD Modell
- 11. Analysis of probabilistic CFD simulation
- 12. Conclusion

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_2.jpeg)

Institute of Fluid Mechanics Chair of Turbomachinery and Jet Propulsion

- [1] SACHS, L.: Angewandte Statistik, Anwendung statistischer Methoden. Springer-Verlag, Berlin/Heidelberg/New York, 2004.
- [2] ANDERSON, T. W.; DARLING, D. A.: Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes. Annals of Mathematical Statistics 23, Seiten 193–212, 1952.
- [3] WILL, J.; BUCHER, C.: Statistische Maße f
  ür rechnerische Robustheitsbewertungen CAE gest
  ützter Berechnungsmodelle. Weimarer Optimierungs- und Stochastiktage 3.0, 2006.
- [4] STEPHENS, M. A.: EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association, Vol. 69, Seiten 730–737, 1974.