MpCCI – The Independent Code Coupling Interface

Dr. Carsten Brodbeck, Fraunhofer Institut SCAI

© Fraunhofer SCAI

Fraunhofer SCAI – Multiphysics Solutions

SCAI

© Fraunhofer SCAI

MpCCI – The Independent Code Coupling Interface

- Spatial Mapping
 - Flexible mapping workflows
 - Ramping and under-relaxation
 - Support for dynamic remeshing in code
 - Handling for orphaned nodes
- Coupling Schemes
 - Asynchronous buffered communication
 - Subcycling support
 - Explicit coupling, implicit coupling under development^{Driver}
- Coupled Simulations as Platform independent Computing
 - Coupling of parallel codes
 - Coupling of <n> codes and models in one application
 - Running on distributed and heterogeneous hardware
- Open interface through API

MpCCI - Data Transfer

© Fraunhofer SCAI

Supported Simulation Codes

MpCCI – Supported Codes

МрССІ	v3.1 (March 2009)	V4.1 (Q1 2011)	V4.2 (Q4 2011)
Abaqus	6.8,6.9	6.10	6.11
Ansys	9, 10, 11, 12	11, 12, 13	11, 12, 13
Elmer	-		5.5
Flowmaster	7,5, 7.6	7.6, 7.7	7.6, 7.7
Fluent	6.3.26, 12.0.16	6.3.26, 12.x, 13	6.3.26, 12.x, 13
Flux	10.2, 10.3beta	10.2, 10.3	10.2, 10.3
Icepak	4.4.6, 4.4.8	4.4.x, 13	4.4.x, 13
MatLab	-	-	Aktuelle Version
MD.Nastran		2010	2011
MSC Adams			2011
MSC.Marc	2005r3, 2007r1, 2008r1	2007r1, 2008r1, 2010	2007r1, 2008r1, 2010
Numeca	Fine/Hexa 2.7	Fine/Hexa 2.11, Fine/Turbo 8.9	Fine/Hexa 2.11, Fine/Turbo 8.9
OpenFoam	-	1.5, 1.6, 1.7	1.5, 1.6, 1.7, 2.0
RadTherm	9.0.1, 9.1.0, 9.1.2, 9.2	9.1, 9.2, 9.3, 10	9.1, 9.2, 9.3, 10.1
Permas	12	-	-
STAR-CD	4.04, 4.06, 4.08	4.06, 4.08, 4.00, 4.12	4.06, 4.08, 4.12, 4.14, 4.16
STAR-CCM+		4.06, 5.02, 5.04	4.06, 5.02, 5.04, 6.02
Adapter API	Available	Available	Available
Modelisar FMI			Internal Prototype
			🖉 Fraunhofer

MpCCI Selected Applications

Electromagnetics

Electric Arc Simulation

Fluid-Structure Interaction

MpCCI Mesh Morpher

MpCCI provides an automatic and fast mesh morphing tool for FSI

Communicates via sockets with CFD code

MpCCI - STAR-CCM+ Remeshing Module

Example FSI: Turbine Rotor

Simulation of deformation of turbine rotor TWT-GmbH:

•Star-CD •Permas

© TWT-GmbH

Example FSI: Flutter Analysis of Wing

Example: Bird Flight

Institute of Fluid Dynamics, University of Karlsruhe

Bird flight with wing-beat kinematics as FSI

© University Karlsruhe

IMAUF – Blechumformung mit elastischem Werkzeug

Coupled Simulation of a small scale transonic fan using Abaqus and FineTurbo

- Coupling Pressure Deformation
- Cooperation with TU Dresden

Thermal simulations

Automotive Thermal Management – STAR-CCM+ & RadTherm

Automotive Thermal Management – STAR-CCM+ & RadTherm

© Fraunhofer SCAI

Coupling of 3D-Codes with System Codes

Environment Control Systems in Large Aircraft Cabins

1D – Air Distribution System Modeling

- Analyze large aircraft air distribution
- Evaluate duct re-routing scenarios
- Study mixing of fresh and re-circulated air
- Conduct "what if" scenarios on duct sizing
- Fast set up and very quick to analyze

CoSimulation Method

- Partial CFD Model of Cabin
 - STAR-CCM+
 - Fluent
 - OpenFOAM
 - Other CFD codes
- Full ECS system model in Flowmaster v7
- MpCCI 4 Code Coupling Interface

Large Aircraft Cabin ECS System in Flowmaster V7

Partial CFD Model of Cabin in STAR-CCM+

Environment Control Systems in Large Aircraft Cabins

© Fraunhofer SCAI

Multi-Scale CoSimulation for Automotive Applications MpCCI 4.2

Tire rolling over Road Curbs

(in collaboration with Fraunhofer ITWM)

- MBS model for suspension (MSC.Adams, other MBS codes planned)
- Detailed CSD models for the tire deformation during contact
- MBS-standalone needs to calculate all load conditions initially
- Then contact and deformations will be co-simulated with FEM
- Relevant Quantities for Coupling: Force, Torque, Position, Angle and Derivatives

Multi-Scale CoSimulation for Automotive Applications MpCCI 4.2 - Example

The Functional Mockup Vision Modelisar FMI Standard for CoSimulation

D. Neumerkel, Daimler – 1st Fraunhofer Multiphysics 2010

Implicit Coupling in MpCCI 4.2

Weak and Strong Coupling

Weak coupling (explicit coupling):

Strong coupling (implicit) coupling:

New Feature in MpCCI 4.2 Implicit Coupling – Problem Description

- essentially in fluid structure interaction with incompressible media
- extremely high pressure near moving walls
- severe oscillations of moving parts with explicit coupling

each individual solution (CFD/FEM) converges to a stable solution with implicit coupling -> kinematic (displacements, velocities, accelerations) and dynamic (loads, forces, stress) coupling conditions must be fulfilled

- 1. F submits actual loads to FEM (dynamic. coupling conditions hold).
- 2. S performs one time-step to obtain new deformation without any knowledge about the inertia of the fluid. The new strucure's position is overestimated.
- 3. S submits new positions to F (kinematic coupling conditions hold, dynamic coupling conditions do not).
- F performs one time-step to obtain new flow field after having performed mesh adaption.
 High fluid inertial forces act on structure resulting in a "reversed" pressure force.

Details of implicit coupling scheme (OpenFOAM)

time loop, start with U = U(t), p = p(t), time = t

Problems of Implicit Coupling Schemes

- Iteration in a time step until convergence while not advancing in time.
- Do some under-relaxation to avoid instabilities within iterations, choice of good relaxation factors is a balance between convergence speed and stability
- Observe convergence, convergence of sub-problems measured by codes and convergence of coupling conditions measured by MpCCI. What is a good criterion for convergence, dynamic and kinematic tolerance?
- Remeshing will invalidate buffered data.
- Codes have to support implicit coupling, i.e. access to inner iterations and advancing back in time, modification of relaxation factors, dynamic abortion of iteration and immediate advancement in time.
- Implicit coupling is more time consuming

Implicit Coupling MpCCI 4.2

Non-linear FSI for an Elastic Flap in a Duct with water

OpenFOAM ← → MD.Nastran

Explicit Coupling

ImpStableAni

Rotating Systems in MpCCI 4.2

Mesh Motion and Moving Reference Frames Supported in MpCCI 4.2

Problem Description

- Parts of the model in CFD and FEM may rotate and/or translate either in a inertial coordinate system or in a moving reference frame
- Some exchanged quantities have to run through transformation
- Force vectors have to follow the rotation (Piola-Kirchhoff) in FEM
- Rotational velocity might be part of the solution (not in MpCCI 4.2)
- For not constant rotations sophisticated mesh smoothing and remeshing is needed in CFD

Example Ansys Fluent Sliding Mesh

Contours of Static Pressure (pascal) (Time=1.0000e-04) Jul 20, 2011 ANSYS FLUENT 12.1 (2d, dp, pbns, dynamesh, skw, transient)

Mesh Motion and Moving Reference Frames Supported in MpCCI 4.2

Mesh Motion and Moving Reference Frames Supported in MpCCI 4.2

Possible Applications:

- Pumps, turbines, rotors, stirrers
- Gas turbine propulsion
- Marine propeller
- Clutches, brakes

Contact

Thanks for your attention!

Contact MpCCI: Klaus Wolf Fraunhofer Institute SCAI Schloss Birlinghoven 53754 Sankt Augustin Germany klaus.wolf@scai.fraunhofer.de http://www.scai.fraunhofer.de/

